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Parametric Instabilities of Parallel-Propagating Alfvrn Waves:

Some Analytical Results

V. JAYANTI AND JOSEPH V. HOLLWEG ((Z7 +i"._':/ / ,/j/" ".()
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We consider the stability of a circularly polarized Alfvrn wave (the pump wave) which propagates
parallel to the ambient magnetic field• Only parallel-propagating perturbations are considered, and we
ignore dispersive effects due to the ion cyclotron frequency. The dissipationless MHD equations are
used throughout; thus possibly important effects arising from Landau and transit time damping are
omitted. We derive a series of analytical approximations to the dispersion relation using A =
(AB/Bo) 2 as a small expansion parameter; AB is the pump amplitude, and B 0 is the ambient magnetic
field strength. We find that the plasma/3 (the square of the ratio of the sound speed to the Alfvrn speed)
plays a crucial role in determining the behavior of the parametric instabilities of the pump. If 0 </3 <
1 we find the familiar result that the pump decays into a forward propagating sound wave and a
backward propagating Alfvrn wave with maximum growth rate ")tmax oc A I/2, but 13cannot be too close

3/4 _ 3/2to0ortol. If/3_l, we find Ymax, CCA ;if/3>l, wefindYma x A , while if /3 _ 0, weobtain
"Ymaxoc A 1/3; moreover, if/3 _ 0 there is a nearly purely growing instability. In contrast to the familiar

decay instability, for which the backward propagating Alfv6n wave has lower frequency and
wavenumber than the pump, we find that if/3 _> 1 the instability is really a beat instability which is
dominated by a transverse wave which is forward propagating and has frequency and wavenumber
which are nearly twice the pump values. Only the decay instability for 0 </3 < 1 can be regarded as
producing two recognizable normal modes, namely, a sound wave and an Alfv6n wave. We discuss
how the different characteristics of the instabilities may affect the evolution of Alfv6n waves in the
solar wind. However, for a solar wind in which/3 _ 1 the growth times of the instabilities are probably
too long for these instabilities to have an appreciable effect inside 1 AU.
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1. INTRODUCTION

A circularly polarized Alfvrn wave propagating along the

ambient magnetic field is an exact solution to the MHD

equations, even when the wave amplitude is large [Abra-

ham-Shrauner and Feldman, 1977; Barnes and Hollweg,

1974; Barnes and Suffolk, 1971]. However, Galeev and

Oraevskii [1963] and Sagdeev and Galeev [1969] showed that

the Alfvrn wave is unstable: it can decay into a backward

propagating Alfvrn wave and a forward propagating sound

wave. Goldstein [1978] and Derby [1978] derived the follow-

ing dispersion relation for perturbations about a background

consisting of the ambient magnetic field plus the circularly

polarized "pump" Alfvrn wave:

{(X 2 -- b2y2)(x - y)[(x + y)2 _ 4]

- ay2(x 3 + xZy + y - 3x)}(x - y) = 0 (1)

where x = w/09o, y = k/ko, 090, and k0 are the angular

frequency and wavenumber of the pump wave, to and k are

the angular frequency and wavenumber of the plasma den-

sity perturbations (see Jayanti and Hollweg [1993] for a

discussion of the importance of properly specifying the

meanings of 09 and k), b = Vs/Va is the ratio of the sound

speed v s to the Alfvrn speed v A, and A = (AB)2/B 2 is the

square of the ratio of the pump wave amplitude AB to the

ambient field strength B o. Equation (1) is valid for a low-

frequency pump wave with dispersive effects neglected; thus
2 2

09o/ko = V2a. Equation (1) is also valid only for the case

where the pump wave and all perturbations propagate par-

allel or antiparallel to the ambient magnetic field. Finally, (1)
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has been derived from the MHD equations; collisionless

effects such as Landau and transit time damping are there-

fore omitted. Sakai and Sonnerup [1983], Terasawa et al.

[1986], Longtin and Sonnerup [1986], and Wong and Gold-

stein [1986] extended (1) to include dispersive effects which

arise from the finite gyroperiod of a single massive ion, while

Viffas and Goldstein [1991] consider perturbations which

propagate at a nonzero angle to the ambient field. Hollweg et

al. [1993] consider new instabilities which can arise in a

plasma consisting of electrons, protons, and streaming alpha

particles. In this paper we will consider only (1).

Equation (1) and its extensions have been considered

numerically (see especially Wong and Goldstein [1986]), but

surprisingly little attention has been given to analytical

solutions. Galeev and Oraevskii [1963] considered a small-

amplitude pump wave in a low-/3 plasma (where /3 --- b2).

They approximated the maximum growth rate 3' for the

decay instability as

'Ymax "_ A 1/2/3 -1/4o90/2 (2)

Even though this equation is for a low-/3 plasma, it clearly

fails as/3 --_ 0. One of the goals of this paper is to provide an

expression for 3'max which is valid for/3 _ 0. However, we

shall also consider approximate analytical solutions to (1) for

a full range of values of/3. For values of/3 between 0 and 1

we will obtain a generalization of (2) which reduces to (2)

when/3 << 1. However, as/3-+ 0, we will find that a different

approximation procedure is required and that Tmax cx A 1/3, in

contrast to the scaling "Ymaxoc A 1/2 found for/3 between 0 and

1. We will also find that a different approximation scheme is

required when/3 _ 1; in that case we will find that 'Ymax oc

A 3/4. Finally, if/3 is greater than, but not close to 1, we will

find that "Ymax oc A 3/2. We will also find that only when/3 is

between 0 and 1, but not close to either limit, can the pump
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A= 0.0 /

b=0.5/
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Fig. 1. Normalized wavenumber Y = k/ko as function of nor-
malized frequency x = o)/_o0 for A = 0.0 and b = 0.5 (/3 = 0.25). The
five roots are obtained from the exact dispersion relation (1); the
sixth root x = y is not shown. The notations fs, fA, and bs denote

forward-sound, forward Alfv6n, and backward sound waves, re-
spectively. The notations -b and +b denote backward Alfv6n
waves involving (o__, k_) and (_o+, k+), respectively.

wave be regarded as decaying into a forward propagating

sound wave and a backward propagating Alfv6n wave hav-

ing lower frequency and wavenumber than the pump. In

particular, when /3 >_ 1, the instability is really a beat

instability which is dominated by a forward propagating

transverse wave having frequency and wavenumber which

are nearly twice the pump values [cf. Umeki and Terasawa,

1992]. If b -_ 0, the instability produces a backward propa-

gating wave which differs from the Alfv6n wave in that it

propagates slower than the Alfv6n speed, and if/3 _ 0 or/3

> 1, the sound wave is not involved in the instability.

These different characteristics of the instabilities may

affect how Alfv6n waves evolve in the solar wind. For

example, the development of MHD turbulence in the solar

wind is usually regarded as requiring both inward and

outward propagating waves [Dobrowolny et al., 1980], and

the decay instability is a possible means of generating the

inward waves from a field of outward propagating waves

originating at the Sun. SimilarlY, the decay instability has

been thought to provide a mechanism for explaining the

increasing importance of inward propagating waves which is

observed [Marsch and Tu, 1990; Roberts et al., 1987] at

greater heliocentric distances (see Lou [1993] for a different

point of view). However, our results show that, in contrast

to the decay instability, the beat instability which occurs

when/3 >_ 1 primarily produces outward propagating waves.
Thus throughout much of the solar wind, where/3 >_ 1, the

parametric instabilities are a less attractive mechanism for

initiating a turbulent cascade or for producing the observed

inward waves. However, the beat instability may provide a

direct mechanism for transferring energy to high wavenum-

bers, since the dominant unstable wave occurs roughly at

2k0.
At the outset, however, we should point out that our

discussion will omit collisionless damping, which will be

important in space plasmas such as the solar wind. All the

parametric instabilities are mediated by density fluctuations,

which are subject to ion Landau and transit time damping

which are not included in the fluid model leading to (1).

Collisionless damping will reduce the growth rates of the

parametric instabilities [Inhester, 1990; Terasawa et al.,

1986], but the decay instability is known to survive even

when the damping is strong. Thus our calculations are

expected to be only qualitatively correct; we will discuss this

issue further in section 8. However, our analysis will still be

quantitatively useful when the damping is weak. We believe

that our results will provide a useful analytical benchmark

for interpreting MHD simulations of the parametric instabil-

ities [e.g., Agim et al., 1993; Ghosh et al., 1993; Ghosh and

Goldstein, 1993; Hoshino and Goldstein, 1989; Umeki and

Terasawa, 1992] and for assessing the roles of kinetic effects

in hybrid simulations [Machida et al., 1987; Terasawa et al.,

1986] or in analytical treatments such as Inhester's [1990].

Our analysis also omits any effects due to the ion cyclo-

tron frequency. The modulational instability [e.g., Longtin

and Sonnerup, 1986; Machida et al., 1987] is therefore

omitted, as is a less important beat instability [Wong and

Goldstein, 1986]. Equation (1) therefore does not distinguish

between right and left circularly polarized waves, and we do

not recover the result that the decay instability has a

somewhat faster growth rate when the pump wave is right-

handed [Wong and Goldstein, 1986]. These effects may not

be important for the low-frequency Alfv6n waves in the solar

wind, but their omission means that we can not treat

ion-resonant waves upstream of the Earth's bow shock [see

Spangler, 1992, and references therein].

2. CASE A = 0

We will henceforth ignore the root x = Y which is always

a factor of (1). In the limit of vanishingly small pump wave

amplitude, A -+ 0, the remaining roots of (1) are five straight
lines in the x-y plane. Two of the roots are x = by and x =

-by. If we take tOo = koVA (a "forward propagating"

pump), then these two roots correspond to forward propa-

gating and backward propagating sound waves, respectively;

they are denoted fs and bs (i.e., forward sound and back-

ward sound) in Figure 1, which shows the five roots for b ---

1/2 (only the first and second quadrants are shown, since y

(-x) = -y(x)). The remaining three roots are Alfv6n

waves. Since tO and k have been defined to refer to the

plasma density fluctuations and longitudinal (i.e., along B0)

velocity fluctuations, the transverse velocity, and magnetic

field fluctuations always have frequencies and wavenumbers

given by tO+_ = tOo + tO and k+ = k0 +- k. The root x = Y
corresponds to a forward propagating Alfv6n wave with

tO+_/k +_= + VA ; this root is denotedfA (i.e., forward-Alfv6n)

in Figure 1. The root x + y = 2 is a backward propagating

Alfv6n wave involving tO- and k_ ; i.e., tO_/k_ = --Va; it is

denoted -b in Figure 1. Finally, the root x + y = -2 is a

backward propagating Alfv6n wave involving tO+ and k+;

i.e., tO+/k+ = --VA; it is denoted +b in Figure 1.
If A # 0, instabilities can occur in the first and third

quadrants of Figure 1. The usual decay instability occurs

near the intersection of thefs and - b roots, and we consider

that case in the next section.

3. DECAY INSTABILITY: 0 < /3 < 1

We consider the case of/3 between 0 and 1; however, w_

shall see below that/3 cannot be too close to 0 or 1. The solit
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curves in Figure 2a show the roots of (1) for A -- 0.1 and

b = 1/2 (i.e.,/3 = 1/4); we have taken y to be real, and Figure

2a displays the real part of x, denoted Xr. The roots

corresponding to the lines fs, fA, and - b in Figure 1 have

been labeled accordingly. The existence of an instability is

readily recognized by inspecting Figure 2a. The instability

exists in the "gap" between the two hyperbolas. Above and

below the gap, the hyperbolas give two real roots for x, for

a given value of y. Within the gap, however, there is only

one value ofxr for each value of y; this indicates that there

are two complex conjugate roots for x, one of which is

growing (unstable). In this case the gap represents the decay

instability which involves a forward propagating sound wave

and a backward propagating Alfv6n wave; it occurs in the

vicinity of the intersection of the fs and -b roots. The solid

curve in Figure 2b displays the positive imaginary part of x,

denoted xi; the values ofx i for the other root are the same as

those displayed in Figure 2b but of opposite sign.

An analytical approximation for the unstable roots is

obtained by expanding (1) around the point where thefs and
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Fig. 3. The maximum growth rate as function of A obtained
from approximation (5) (dashed curves) and from the exact roots of
(1) (solid curves). Note that the approximation tends to fail as b
0 and b _ 1.
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Fig. 2. The (a) real and (b) imaginary parts ofx as functions of

y forA = 0.1 and b = 0.5 (/3 = 0.25). The solid curves are the exact
roots of (1); the dashed curves are obtained from approximation (4).

The solid circle indicates the expansion point (Xs, Ys) given by (3).

-b lines in Figure 1 intersect. This point has coordinates

(xs, Ys) given by

xs = 2b/(1 + b) (3a)

Ys = 2/(1 + b) (3b)

The expansion point is indicated by the solid circle in Figure

2a. Thus we take x = x s + dx, y = Ys + dy. We assume

that A is small and of the order of e and that dx and dy are

of the order of e 1/2. (The ordering of dx and dy is dictated by

inspection of the mathematical form of (1).) The lowest-

order terms in (1) are then of the order of e. Setting these

terms to zero gives the approximate dispersion relation,

8(1 - b)[4b(1 + b)2(dy + dx)(b dy - dx)

- A(1 - b)](1 + b)-4 + 0(e3/2) = 0 (4)

The solutions to (4) are the dashed curves in Figure 2.

Comparing the solid and dashed curves in Figure 2 shows

that (4) gives a reasonable approximation to the full disper-

sion relation (1), except that the root x = y is lost entirely.

Thus we expect (4) to fail to describe the instability when the

unstable roots to (4) overlap with the missing root x _ y; this

will tend to occur as b --> 1, since the fs and fA roots in

Figure 1 then tend to overlap. Equation (4) also does not

contain the root corresponding to backward propagating

sound, x _ -by. Thus we expect (4) to fail also when the

unstable roots to (4) come close to the root for backward

propagating sound; this will tend to occur as b --> 0.

According to (4) the maximum growth rate occurs when

dy = 0:

_/max At/2(1 - b) 1/2

to o 2bl/2(1 + b) (5)

which agrees with (2) for small b. Equation (4) also shows

that the range of unstable wavenumbers is approximately

AI/2(1 - b) 1/2 A1/2(1 - b) 1/2
< dy < (6)

bl/2(1 + b) 2 bl/2(1 + b) 2



i ¸

• ?i

19,052 JAYANTI AND HOLLWEG:

Figure 3 compares approximation (5) with the maximum

growth rates obtained by solving (1) numerically; the ap-

proximate and exact values are the dashed and solid curves,

respectively. Approximation (5) is quite accurate for 0.3 < b

< 0.7, but it fails for small values of b and as b _ 1.

Finally, it is useful to note that the two solid lines

originating at the origin in Figure 2a have slopes which are

different from the slopes of the forward sound and forward

Alfvrn lines in Figure 1. The slope at the origin is

s = (x/Y)(x,y)_ (0,0)

From (1) we have

4(s - 1)(s - b)(s + b) + A(1 - 3s) = 0 (7)

Taking A to be of the order of e, we seek solutions of the

form

s=b+ ecr 1+ e2(r2+"" (8)

Equation (7) then yields

A(3b - 1) A2(3b- 1)(3b2 + 1) ]Sl = b 1 + 8b2( b _ 1) 128(b - 1)3b 4 + "'" ]
(9)

Equation (9) represents the fact that the phase speed of a

low-frequency sound wave is modified by the presence of the

pump Alfv6n wave. The series fails when b _ 0 or b _ 1; in

those situations it is no longer possible to think in terms of a

sound wave superimposed on the pump wave. We will deal

with those situations later. Similarly, for the forward prop-

agating Alfvrn wave we take

S = 1 + EO" 1 + E2Or2 + "'" (10)

and we find

[ A A+3 lS 2 = /3 -}- (1 -- /3) 1 q- 2(1 -/3)2 8(1 - /3)4 +''"

(11)

Again, the series fails if/3 --_ 1.

We consider next an alternate approximation for the case

/3_1.

4. CASE /3 _- 1

As/3--_ 1, thefs andfA lines in Figure 1 tend to overlap,

and their intersection with the - b line occurs at the point (1,

1). We expand (1) around this point, and take

x= 1 + dx (12a)

y= 1 + dy (12b)

We again take A to be small and of the order of e, and we

initially take dx and dy to be of the order of e 1/2. However,

we now take Ib - 11to be of order of el/2; the ordering of

Ib - 11 is to some extent arbitrary, but we will find that it

leads to an approximation which smoothly merges into our

other approximations for/3 < 1 and/3 > 1. Equation (1) then

becomes

2(dx + dy)[4(dx - dy) 2 - 4(b - l)(dx - dy) - A]

+ {6(dx 2 - dy2) 2 - 2A(2dx 2 + 3dx dy + 2dy z)

PARAMETRIC INSTABILITIES

- 2(b - 1)(dx 2 - dyZ)[2(b - 1) + dx + 9 dy]}

+ 0(e 5/2) = 0 (13)

The first term in (13) represents three straight lines. One of

these, dy = -dx, represents the -b root passing through

the point (1, 1). Each of the other two lines has a slope of + 1,

but one line lies above and one line lies below the point

(1, 1). We will not write down the equations for these two

lines, but we note that they intersect the line dy = -dx at

the points

dy+_ = {-(b - 1) + [A + (b - 1)2]1/2}/4

dx+_ = -dy+_ (14)

The meaning of (14) will be discussed below.

It will turn out that instability occurs in the vicinity of the

intersection corresponding to the plus sign in (14). So we

expand (13) around that point, taking

dy = dy+ q- dy 2 (15a)

dx = dx+ -}- dx 2 (15b)

Thus we are doing a double expansion. We find from

inspection of the resulting equation that dx 2 and dy 2 should

be of the order of e 3/4. To lowest-order, (13) then yields the

approximate dispersion relation

A

8S(dy 2 - dx22) - _ [S - (b - 1)] 2 + 0(_ 9/4) = 0
(16)

T max 3/max

---< y - 1- dy + < -- (18)
tO 0 tO 0

Figures 4 and 5 are similar to Figure 2, except that the

exact roots of (1) (the solid curves) are compared with

approximation (16) (the dashed curves). The center solid

circle is the point (1, 1) and the other two solid circles are the

points (1 + dx+_, 1 + dy+) given by (14). In Figure 4, A =

0.2 and b = 0.9; in Figure 5, A = 0.2 and b = 1.1. We see that

(16) does a reasonably good job of representing Xr, but only

in the vicinity of the instability. Equation (16) can lead to

moderate errors in Ymax, but this is in part due to the large

values of A and [b - 11 which have been chosen for clarity

in Figures 4a and 5a.

In Figure 6 we compare approximation (17) (the dashed

curves) with the exact roots (the solid curves) of (1); we have

taken b to vary from 0.8 (top curves) to 1.2 (lower curves) in

where

S --=[A + (b - 1)2] 1/2

According to (16), the maximum growth rate is

Ymax al/Z[S-(b- 1)]

too 881/2 (17)

Note that "Ymax cc A 3/4 if Ib- 11 = 0, in contrast to the A 1/2

behavior for the decay instability. (We are unable to offer a

physical explanation for the A 3/4 dependence.) Equation (16)

agrees with (5) as A --_ 0 while (1 - b) > 0 remains finite,

in which case Tmax ccA 1/2; (16) also agrees with (25) below if

A --* 0 while (1 - b) < 0 remains finite, in which case Tmax

oc A 3/2. Equation (16) also shows that the range of unstable

wavenumbers is approximately
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steps of 0.1. The approximation is rather robust; for b = 1

the approximation and the exact roots are essentially indis-

tinguishable.

Finally, we consider the slopes of the lines originating at

the origin in Figures 4a and 5a. We again use (7) for s =

(x/Y)(x y)--_(0 0)" With A of the order of e and Ib - 1[ of the

order of E 112',we write

S = 1 + E 1/20" 1 + e0" 2 + • • • (19)

and (7) then yields

b-l-S A
s3 = 1 + +--+... (20a)

2 8

b-l+S A
s4= 1+ +--+--. (20b)

2 8

To the order of el/2, the intersections of these two lines with

the line y = 2 - x (i.e., the -b line in Figure 1) are y = 1

+ dy±, where dy± is given by (14).

1.5-

1.0

y

].3-

1.0

,,,/,y
, /o!

1.0 1.5

Xr

A=0.2

b=0.9

xi

(b)
I

0.06

Fig. 4. The (a) real and (b) imaginary parts ofx as functions of
y forA = 0.2 and b = 0.9 (/3 = 0.81). The solid curves are from (1)
and the dashed curves are from approximation (16). The solid circle
in the center is the point (1, 1), and the other solid circles are the
points (1 + dx+_, 1 + dy±) given by (14).
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1.0
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b=l.l
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(a)
I I

1.0 1.5

Xr

1.0

A= 0.2

b=l.1

(b)
I

0 0.03

Xi

Fig. 5. Same as Figure4butb = 1.1(/3= 1.21).

5. BEAT INSTABILITY: _ > 1

We now turn to the case where b > 1, but b is taken to be

of order unity. In this case, (9) is valid, and it is again

possible to recognize one of the roots of (1) as being

essentially a sound wave modified by the presence of the

pump wave. However, this sound wave is not involved in the

instability, and we no longer have decay of the pump wave

into a forward propagating sound wave and a backward

propagating Alfvrn wave. Instead, the instability involves

the other root which originates at the origin, that is, the

forward Alfvrn root described approximately by (11), as well

as the backward Alfvrn root. These two roots are produced

by the beating of the pump wave (at too, k0) with the

compressional wave (at to, k) to produce the forward Alfvrn

wave (at to+, k+) or the backward Alfv6n wave (at w_, k_).

In this sense the instability should be thought of as a beat

instability rather than a decay instability.

We first expand (1) around the point (x, y) = (1, 1) and

take

x=l+dx

y=l+dy

Taking A, dx, and dy to be of the order of e, (1) becomes
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b = 0.8

log (_-_) ,, ",, "

_2 / ,/,/
b=l.2

-3 I I
-2 -1 0

log (A)

Fig. 6. The maximum growth rate as function of A obtained
from approximation (17) (dashed curves) and from the exact roots of
(1) (solid curves). The value of b ranges from 0.8 to 1.2 in steps of
0.1. The approximation and the exact values are nearly indistin-
guishable when b = 1 (/3 = 1); in this case, Ymax _ A3/4.

-(dx + dy){(dy - dx)[4(1 -/3) + dy(1 - 9/3) + dx(9

-/3)]+2A}-2A(2 dx 2+ 3 dx dy + 2dy 2)

+ 0(134) = 0 (21)

The first term in (21) is zero when

= = --+ (1dy dy s -_ _--_+ 1+/3 _] j (22a)

dx = dx s = -dy s (22b)

It can be shown that to the order of e 2 the point (x, y) = (1

+ dxs, 1 + dys) is the intersection of the line x = ys 2 (with

s2 given by (11)) with the line y = 2 - x (i.e., the -b line in

Figure 1).

We again do a double expansion, so (21) is expanded

around the point

dy = dys + dy2 (23a)

dx = dxs + dx2 (23b)

Inspection of (21) then reveals that dx 2 and dy2 are of the

order of e 3/2. To lowest order, (21) then becomes

a 3 + 32(/3 - 1)3(dx 2 - dr 2)
+ 0(e 7/2) = 0 (24)

8(/3 - 1)z

Equation (24) is our approximate dispersion relation for

the instability. According to (24), the maximum growth rate
is

T max A 3/2

(25)
tOo _ 4_/2(/3 - 1) 3/2

and the range of unstable wavenumbers is approximately

A 3/2 A 3/2

4_(/3 - 1) 3/2 <y- 1 -dYs<4x/_(/3 _ 1)3/2 (26)

The growth rate declines rapidly as/3 increases; this reflects

the fact that density perturbations are required for the

instability, while/3 --_ oo represents the incompressible limit.

Figure 7 again compares the exact roots (the solid curves)

1.5"

1.0-

0

0

1.2-

1.1-

1.0

0.8

A= 0.7

_=3.0 .¢-

/)

I I
1.0 1.5

Xr

I_= 3.o

0.9 1.0

Xr

1.2- (c)
A=0.7

y I1 =3.o

l0 I I
0 0.02 0.04

Xi

Fig. 7. The (a) and (b) real and (c) imaginary parts of x as
functions of y for A = 0.7 and/3 = 3. The solid curves are from (1),
and the dashed curves are from approximation (24). The solid circle
is the expansion point given by (22).
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r

with approximation (24) (the dashed curves); we have taken

/3 = 3 and A = 0.7. We have chosen a large value of A for

clarity, but Figure 7c shows that (24) then leads to a

significant overestimate of the growth rate.

Our estimate of Tmax is compared with the numerical

values in Figure 8; the dashed lines represent (25), and the

solid curves give the exact values. As expected, approxima-

tion (25) tends to fail as A becomes large, but it becomes an

increasingly better approximation as/3 increases.

6. CASE /3 _" 0

The analysis for very small values of fl is more involved

than the other cases. The numerical roots of (1) are displayed

in Figure 9 for the case A = 0.01 and b = 0.03 (/3 = 9 x

10-4). In this case there is a very broad range of instability,

spanning the range 1.7 < y < 3.9. In fact, the upper limit on

the range of instability, Ymax, approaches infinity as/3--> 0;

by taking x = 0 in (1) we find

Ymax _ (4 + A//3) 1/2 (27)

We will therefore find it necessary to develo p two different

expansions to cover the broad range of y.

It should also be noted that the slopes of the two steep

lines originating at the origin do not correspond to the speed

of sound. We again solve (7), taking A to beof the order of

e, and b to be of the order of e 1/2 (so that/3 is of the order of

e, as suggested by (27)). With

S = e 1/20" 0 + e0-1 "}- " " " (28)

we obtain

s5 = +-(/3 + A/4) 1/2 _ A/4 + ... (29)

Equation (29) remains valid as/3--> 0. To some extent, (29)

can be thought of as the dispersion relation for a primarily

-5 I I
-2 -1 0

log (A)

Fig. 8. The maximum growth rate as function of A obtained
from approximation (25) (dashed _ulves) and from (1) (solid curves).

oc 3/2The approximation implies Tmax A •

A = 0.01 y5
b = O.03

-b

1/2 _ rA

-0.5 0 015

Xr

Fig. 9. The roots of(l) for a "low-beta" case, A = 0.01 and b =
0.03 (/3 = 9 x 10-4). The broad region of instability does not
correspond to the interaction of two modes.

transverse wave propagating on a coiled spring, the spring

being the pump wave; the plasma pressure contributes an

additional restoring force and enhances the phase speed:

Thus we again encounter a situation where the instability is

fundamentally different in nature from the classic decay Of a

pump wave into forward sound and backward Alfv6n waves.

We begin by expanding (1) around the point (x, Y) =

(0, 2), so that

x = dx (30a)

y = 2 + dy (30b)

With A and/3 of order e we take dx and dy to be of the order

of el/3; this choice is again dictated by inspection of (1).

Equation (1) then becomes

-8(A + dy dx 2 + dx 3) + 0(e 4/3) = 0 (31)

Equation (3 !) gives the maximum growth rate when dy = 0:

_tma x 31/2A 1/3

-- _ -- (32)
to o 2

In contrast to the cases considered previously, the real and

imaginary parts of to are here comparable.

We now have to use a new expansion if dy is not small.

We again take A and/3 to be of order e, but we now take dy

t0 be of order unity. If we further take dx to be of order el/2,

as suggested by (29), then (1) becomes

-(2 + dy){dx 2 dy(4 + dr) + (2 + dy) 2

• [a -/3 dy(4 + dy)]} + 0(e 3/2) = 0 (33a)

which has the solution

x[- = +- /3 y2,4 (33b)Y

Equation (33b) agrees with expression (29) for s5 a y --> 0,

and it also agrees With (27) for Ymax. However, (33) fails (as

expected) when y _ 2.

Figure 10a compares the exact roots of (1) (the solid
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Fig. 11. Growth rates corresponding to Figures 9 and 10. The
solid curve is derived from (1), the dashed curve is from approxi-
mation (31), and the dotted curve is from approximation (33). The
portion of the solid curve which is well-represented by the dots is a

nearly purely growing mode.

Note that the growth rate can substantially exceed the real

part of the frequency when dy is positive and of order unity,

and the instability can be nearly purely growing.

Figure 12 compares the approximation (dashed line) for

"Ymax given by (32) with the roots of (1) (the solid curves) for

four values of/3. The approximation is useful only for very

small values of/3.

We have obtained an alternate approximation by taking

dx = dxc + dx'

with dxc of the order of e 1/3 and dx' of the order of e 2/3. With

dy of the order of e u3 we find that dxc is given by the cubic

equation (31), and

(16/3 - 3A) dy + (16/3 + 5A) dx c
dx' = (34)

(8 dy + 12 dx_) dx c

Fig. 10. Same as Figure 9, but the dashed curves are derived from
(a) approximation (31) and (b) approximation (33).

curves) with the roots of the approximate cubic equation (31)

(the dashed curves); we have taken A = 0.01 and b = 0.03.

The failure of approximation (31) is evident if Idyl >- 0.5.

Note in particular that (31) misses the parabolic behavior at

y _> 4, and it fails near the origin. The other approximation, that

is, the quadratic (33), is compared with the roots of(I) in Figure

10b; again, A = 0.01 and b = 0.03. We see that (33) succeeds

where (31) fails: it correctly represents the behavior near the

origin, and it includes the parabolic behavior at y _> 4.

Growth rates derived from approximations (31) (dashes)

and (33) (dots) are compared with the exact roots of (1) (solid

curve) in Figure 11, forA = 0.01 and b = 0.03. Equation (31)

yields a reasonable approximation to the behavior in the

vicinity of maximum growth, while (33) is useful for approx-

imating the decline of the growth rate in the vicinity of y max"

log (_o _)

-I-

oo3

-2 I I I
-3 -2 - I 0

log (A)

Fig. 12. The maximum growth rate as function of A obtained
from approximation (32) (dashed curves) and from (I) (solid curves).
The dashed line implies Ymax _x A 1/3.
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We can show that the maximum growth rate occurs for a

value of dy which is of the order of A 2/3, so for self-

consistency we obtain 3_maxby taking dy = 0 in (31) and (34):

Ymax 3 1/2A 1/3 [ (5 + 16fl/a)A 1/3]
_-- 1- (35)

o) 0 2 [ 12 J

Note that (35) will fail if A 2/3 <<. 4/3/3; this is not surprising

since our expansion procedure assumed that /3 and A are

both of the order of e. Figure 13 compares approximation

(35) with the exact roots of (1); the approximation is quite

accurate over a limited range of A, but the failure of (35)

when A becomes smaller than /3 is evident. If A << /3,

approximation (5) becomes valid and the instability is then

equivalent to the familiar decay instability.

Finally, for completeness we give the result of a higher-

order expansion for the case where dy is of order unity. We
write

dx = dx q + dx"

where dXq is of the order of e 1/2 and dx" is of the order of e.

We find that dxq is given by the quadratic equation (33) and

2A(2 + dy)(2 + 4 dy + dy 2)
dx" = (36)

[dy(4 + dy)] 2

It is interesting to note that some of the results of this

section are similar to results obtained by Forslund et al.

[1972] for parametric instabilities of whistler waves. Our (33)

is a generalization of their (7), while our (32) is formally

similar to their (6), except for different definitions of A.

7. POLARIZATIONS

Since some of the instabilities discussed above do not

resemble the usual decay instability, it will be useful to learn

more about their properties. We will follow the analysis

given by Hollweg et al. [1993] (hereafter referred to as HEJ).

In that paper the ambient magnetic field B 0 was taken to

point in the x direction; the pump wave and the unstable

waves were also taken to propagate in the x direction. HEJ

defined a complex transverse velocity V± = Vy + iVz;

similarly, B± = By + iB z. The circularly polarized pump
wave was written as

B±0 = AB exp (ikox - iogot)

where x here refers to the spatial coordinate and AB, k0, and

_o0 are taken to be real. The transverse velocity fluctuations
were taken to have the form

_V± = v+ exp (ik+x - iw+t) + v_ exp (ik_x - iw_t)

(37)

while the longitudinal velocity fluctuations have the form

6Vx = Re [u exp (ikx - iwt)] (38)

HEJ defined k+ = k 0 + k, k_ = k 0 - k*, co+ = _o0 + w,

and _o_ = _o0 - w*, where the asterisk denotes a complex

conjugate.

From (6) and (12) of HEJ we find that the velocity

polarizations are given by

-0.25 -

log (_o _)

Fig. 13.

[5=0. '_

///,,'
///" ,,'

0.011 I

1.25 t I I I I
-3 -2 - 1 0

log (A)

Same as Figure 12, but the dashed curves represent the
alternate approximation (35).

v+zl,21 ( yx+u 2 x 2 y2 x+ x + y (39)

v__ A 1/2 __1 ( __ y'x____ )U* 2 X 2 y2 X__ X* +y2 (40)

wherex+ = 1 + x,y+ = 1 + y,x_ = 1 -x*,andy_ =

1 - y* (and x and y now again refer to the normalized

frequency and wavenumber used in this paper; i.e., x =

W/Wo, y = k/ko). In obtaining (39) and (40) we have

restricted the results of HEJ to an electron-proton plasma,

and we have eliminated dispersive effects by taking Wc --_ _,

where w c is a cyclotron frequency.
We will be interested in the extent to which the waves are

transversely or longitudinally polarized. The degree of trans-

verse polarization is

T =- (6V_) = 2 u* + u* (41)

where the angle brackets indicate a spatial average. We are

also interested in the extent to which the transverse compo-

nent is dominated by v + or v_. Accordingly, we define the

degree of "plus" polarization as

7)+7)*+

P -- (42)
73 _u*_

In Figures 14-19 we use pen thickness to represent the

degree of transverse polarization; thus a thick pen is used if

the polarization is mainly transverse (T > 2), a thin pen is

used if the polarization is mainly longitudinal (T < 0.5) and

a pen of intermediate thickness is used if there is a roughly

equal mix of transverse and longitudinal components (0.5 -<

T -< 2). We use dashing to represent the relative importance

of v + or v_ ; a solid curve represents plus polarization (P >

2), a dashed curve represents a roughly equal mix of plus

and "minus" polarizations (0.5 -< P -< 2), and a gray curve

is used to represent minus polarization (P < 0.5). To construct

Figures 14-19, the exact roots of equation (1) were used.

In Figure 14 we present the familiar decay instability for

the same parameters used in Figure 2; i.e., A = 0.1 and b =

1/2 (/3 = 1/4). The forward Alfvdn (fA) and backward Alfv6n
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Fig. t4. The dispersion relation, derived from (1), for the same
conditions in Figure 2. Line thickness is used to represent the degree
of transverse kinetic energy compared to longitudinal kinetic en-
ergy; a thick line is used if T > 2, a thin line is used if T < 0.5, and
a line of intermediate thickness is used if 0.5 -< T --- 2. Line density
is used to represent the power in v + compared to v _ ; a solid line is
used if P > 2, a dashed line is used if 0.5 -< P -< 2, and a gray line
is used ifP < 0.5. The decay instability has a mix of transverse and
longitudinal power, and the transverse power is dominated by v_.

(-b) waves are mainly transverse, and the forward sound

(fs) wave is mainly longitudinal, as expected. The forward

Alfvdn wave is dominated by v+, except near the origin

where there is a tendency for v + and v_ to play equal roles.

The backward Alfvrn wave is dominated by v_. The wave

which we have identified as forward sound is mainly longi-

tudinal, but it does contain some transverse velocity fluctu-

ations, so v+, v_ _ 0 (see the following paragraph); the

relative roles of v+ and v_ in the forward sound wave

exhibit a surprisingly complicated behavior. The instability

itself shows a roughly equal mix of transverse and longitu-

dinal components, and the transverse component is domi-

nated by v_, but the behavior of the polarizations is more

complicated in the region around the high-y end of the

instability. Figure 14 is consistent with the known result that

the decay instability produces a forward propagating sound

wave and a backward propagating Alfvrn wave given by _o0

- oJ-_ -(k o - k)v A .

The effect of increased pump amplitude is revealed in

Figure 15, which displays the decay instability for A = 0.5

and b = 1/2 (/3 = 1/4). Note that most portions of the curve

for the forward sound wave are not thin, indicating that the

wave contains a substantial transverse component; in fact,

the fs wave is mainly transverse and dominated by v_ near

the origin. We believe that there is a simple reason for the

sound wave having a substantial transverse component

when A is not small: In a low-/3 plasma the slow mode

consists mainly of field-aligned motions which are guided by

the strong background magnetic field. However, in this case

the background field is at a substantial angle to the x

direction, in virtue of the large-amplitude pump. So even

field-aligned motions will contain substantial components

transverse to the x direction. The instability itself is mainly

transverse at its low-y end, and mainly longitudinal at its

high-y end; at the high-y end we find the surprising result

that the transverse component is no longer dominated by v_.

The character of the instability is significantly changed if/3

is large. Figure 16 displays the results for A = 0.2 and b =

0.9 (/3 = 0.81); these are the same parameters used in Figure

4. Note that there are no waves which are predominantly

longitudinal. For the values of y giving maximum growth

rate the instability contains a mix of transverse and longitu-

dinal components, but in distinct contrast to the decay

instability, we now find that the transverse power is domi-

3.0

2.0

1.0

A=0.5 4'

b = 0.5 S
#

#fs

ililii..... t
......iii!ilili:_.... t
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Fig. 15. Same as Figure 14, but for a larger value of A. At the
lower values of y the decay instability is mainly transverse, while at
the larger values of y the instability is mainly longitudinal and
generates a mix of v_ and v + transverse components.

A=0.2

b = 0.9

o I I
0 1.0 1.5

Xr

Fig. 16. Same as Figure 14 but forA = 0.2 andb = 0.9(/3 =
0.81) (cf. Figure 4). In contrast to the usual decay instability the

transverse power of the instability is dominated by v +.
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nated by v+. Thus whereas the decay instability primarily

produces a forward propagating sound wave and a backward

propagating transverse wave at a low frequency and wave-

number (to o - to, k0 - k), the instability in Figure 16

produces a forward propagating transverse wave at a high

frequency and wavenumber (too + to, k0 + k), in addition to

the forward propagating longitudinal wave.

If /3 is increased further, the instability becomes very

different from the usual decay instability. Figure 17 is for

A = 0.2, and b = 1.1 (/3 _ 1.2); compare with Figure 5. The

instability is now predominantly transverse, and primarily

involves a forward propagating wave at(to 0 + to, k0 + k).

A similar situation occurs for the parameters used in

Figure 7; i.e., A= 0.7 and/3 = 3. This is the beat instability.

The polarizations for this case are displayed in Figure 18.

The sound wave (x _ by) appears in the lower right corner

of Figure 18 and apparently does not play an important role

in the instability, which is in the upper left part of Figure 18.

The instability is primarily transverse and involves (to o + oJ,

k 0 + k); this situation has recently been found in numerical

MHD simulations by Umeki and Terasawa [1992]. This

forward propagating transverse wave has a dispersion rela-

tion like that of the Alfv6n wave but modified by the

presence of the pump; i.e.,

k o+k _ vA 1 +4(1_/3)

which follows from (11) with k _ k 0.

Finally, we consider the low-/3 case. The polarizations

forA = 0.01 and b = 0.03 (cf. Figures 9 and 10) are displayed

in Figure 19. Only at the largest values of y are the

waves primarily longitudinal. The instability shows a mix

of longitudinal and transverse components, but at y _ 2,

where the growth rate is maximal, the transverse component

dominates with T --_ 2. The transverse component of

the instability is dominated by v_, which is backward

propagating.

131 A= 0,2

y
b=1.1

,o , /

0.6 -- , I

0.6 1.0 1.3

Xr

Fig. 17. Same as Figure 14 but forA = 0.2 andb = 1.1 (/3 =
1.21) (cf. Figure 5). In contrast to the usual decay instability the
instability here is dominated by transverse power involving v +.
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Fig. 18. Same as Figure 14 but for A = 0.2 and/3 = 3 (cf. Figure
7). The instability here is dominated by transverse power involving

_)+,

8. SUMMARY

We have considered the stabilityof a parallel-propagating

circularlypolarized Alfv6n wave (the "pump wave") to

parallel-propagating perturbations. In the dispersionless

MHD limit the frequencies x = to/w0 are related to the

wavenumber y = k/ko by (I),which is well known [e.g.,

Derby, 1978; Goldstein, 1978; Longtin and Sonnerup, 1986];

here too and k0 are the frequency and wavenumber of the

pump wave, and to and k refer to the density perturbations

5.0 • !: j

_i ii!
!i. i"

A= 0.01

i..'.._b = 0.03

y

"":':'::!:_:_i_.".'i:_::... !:_i:.
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Fig. 19. Same as Figure 14 but for the low-/3 case A = 0.01 and
b = 0.03 (/3 = 9 × 10-4). Maximum growth occurs at y _- 2; the
instability is then primarily transverse and dominated by v_. At
larger values of y (where the instability is nearly purely growing),
there is a mix of longitudinal and transverse power, and the
transverse component is dominated by v_.
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and related quantities such as the longitudinal velocity
perturbations. Our principal goal has been to provide a series
of new analytical results based on approximately solving (1)

using A as a small expansion parameter; here A = (AB/
B0) 2, where B 0 is the strength of the ambient magnetic field
and AB is the amplitude of the pump.

We find that the plasma/3 (the square of the ratio of the
sound speed to the Alfvrn speed) plays a crucial role in
determining the nature of the parametric instabilities of the

pump. The most familiar instability is the decay instability,
in which the pump wave decays into a forward propagating

sound wave with the real part of the frequency and the
wavenumber given approximately by

x r _ 2b/(1 + b) (44a)

y _ 2/(1 + b) (44b)

and into a backward propagating Alfvrn wave with lower
frequency and wavenumber than the pump, namely, (1 -
Xr) and (1 - y), respectively; here b _-/31/2. However, this
picture is only valid if0 </3 < 1, but/3 cannot be too close
to either limit. If/3 _ 0 or /3 >_ 1, the sound wave is not
directly involved in the instability; moreover, if/3 >_ 1, the
instability is a beat instability.

Consider first the dependence of the maximum growth rate
"Ymaxon A. The decay instability has 3tmaxccA 1/2 (equation

(5), which is a generalization of a result given by Galeev and
Oraevskii [1963]). However, for/3 = 0 we found Ymax c( A 1/3
(equation (32)), for/3 -_ 1 we found 'Ymax oc A 3/4 (equation

(17)), while for/3 _> 1 (the beat instability) we found Ymax oc
A 3/2 (equation (25)). In addition, for/3 -_ 0 the instability
having _/max oc A 1/3 always has comparable real and imagi-
nary parts of oJ, and it merges smoothly into a nearly purely
growing instability (having a smaller growth rate) with "Ymax

A 1/2 if

4A
2 + ----y << (4 + A//3)_/2

(3A 2/3 + 16/3)

(the upper limit is obtained from (33) while the lower limit is
obtained by equating the growth rates given by (32) and
(33)); the A dependence of the nearly purely growing mode is
more complicated if y is above this range (equation (33)),
while the A v3 dependence takes over if y --_2.

The fact that the growth rate scales as A 3/2if/3 _> 1 means

that the growth rate can become very small for small pump
amplitudes, A << 1. Thus the modulational instability, which
has a growth rate which scales as A [Longtin and Sonnerup,
1986, Equation (29)], could be the dominant instability ifA is
small.

The instabilities do not always have the physical charac-
teristics associated with the usual decay instability, namely,
decay of the pump into a forward propagating sound wave,
and into a backward propagating transverse wave involving
oJ_ and k_, which we have called the -b wave. This is
clearly the case when/3 --_0. According to (31), the maxi-
mum growth rate occurs for

X r _ A 1/3/2 (45a)

y _ 2 (45b)

which does not agree with (44a) for the usual decay insta-
bility. Indeed, there can be an instability even when/3 = 0,

and there is no sound wave at all. The net result is that the

unstable wave is primarily transverse and backward propa-

gating, and primarily involves w_ _ _o0 and k_ --_-k0. The
nearly purely growing mode which exists when/3 _ 0 is more
difficult to characterize. Its transverse component is domi-
nated by oJ_ _ o_0 and k_ < - k0, so its propagation speed
is less than the Alfvrn speed. Moreover, the nearly purely

growing mode contains a significant longitudinal component
which can be dominant at the larger values of y if/3 << A.
The nearly purely growing instability is not a decay instabil-

ity.
Consider next the other extreme where/3 is large, which

was examined in section 5. We have suggested that this is
best thought of as a beat instability. In this case too the
sound wave is not involved in the instability. Instead, the
instability primarily produces a forward-propagating trans-
verse wave involving w+ -_ 2w0 and k+ -_ 2k0.

The nature of the instability is more complex if/3 _ 1
(section 4). The transverse component of the unstable wave
is forward-propagating and dominated by w+ _- 2_o0 and k+

--_ 2k0.
However, our discussion has omitted two important phys-

ical effects, namely, Landau and transit time damping, which
will be present in a nearly collisionless plasma such as the
solar wind. (We also omit cyclotron damping. This is con-
sistent with a discussion which is based on (1), which is valid

only for frequencies well below the ion cyclotron frequen-
cy.) Consider first the usual decay instability, for 0 </3 < 1.
The instability produces a sound wave, which is subject to
strong Landau damping unless the electron-ion temperature
ratio is large; i.e., Te/T i >> 1. This condition is probably not
fulfilled in the solar wind; indeed, Te/T i < 1 in high-speed
solar wind streams at 1 AU [e.g., Feldman et al., 1976].
Landau damping will reduce the growth rate, as has been
shown by Inhester [1990], who applied a drift-kinetic treat-
ment to the decay instability (thus Inhester's method also
does not assess the role of cyclotron damping). Inhester
found that collisionless damping reduces the growth rate by
a factor of 2-3 even when Te/T i _ 5; larger values of Te/T i

have a smaller effect on the growth rate, as expected. If
Te/T i "_ 1, the decay instability is no longer recognizable;
there instead appears a kinetic instability of a negative
energy wave, which, like the decay instability, produces a
backward propagating Alfvrn wave. Inhester also found that
the damping increases the range of k for which the pump is
unstable. Thus our analysis yields an overestimate of the
growth rate, and an underestimate of the range of unstable
wavenumbers. However, it is noteworthy that in spite of

very strong damping of the sound wave, instability is not
suppressed. This was observed also by Terasawa et al.
[1986], who investigated the decay instability using a hybrid
code, which automatically includes ion Landau and transit

time damping. Their Table 2 compares the simulated growth
rates for the decay instability with the analytically predicted

growth rates for the dissipationless system. Even though T e

= T i in the simulations, the growth rates are found to be no
smaller than approximately two thirds of the predicted
growth rates. It would thus appear that Inhester's analysis
overestimates the effects of Landau damping; it is not clear

why this is the case.
However, we still have to consider to what extent the

parametric dependences of ]/max given by (5) remain valid in

the presence of damping. Table 2 of Terasawa et al. shows
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that the simulated growth rate scales roughly as A 1/2, but

only two runs are available for this comparison, and those
runs are for a pump frequency which is sufficiently high to

bring ion cyclotron effects into play. The/3 dependence of
'Ymaxis shown in Inhester's Figure 2; the growth rate seems
to decrease with increasing /3 somewhat faster than pre-
dicted by our (5).

We also call attention to the hybrid simulations of
Machida et al. [1987]. They were primarily interested in the
evolution of an amplitude-modulated Alfv6n wave. Their
simulations contain the decay instability, but detailed com-
parisons with the analysis of this paper are not possible.
However, Machida et al. make the interesting observation
that amplitude modulation significantly increases the rate at
which pump wave energy is converted into heat. Fluid
simulations by Hoshino and Goldstein [1989] and Umeki and
Terasawa [1992] include dissipation due to viscosity and
electrical resistivity, but these effects are a poor representa-
tion of collisionless damping, especially since they directly
affect all velocity components, whereas Landau and transit
time damping directly affect only the parallel velocity [Span-
gler, 1989, 1990].

We are not aware of any studies which assess the effects of
collisionless damping for the other cases considered in this
paper, namely,/3 _ 0 or/3 _> 1. If/3 _ 0, the unstable density
fluctuations propagate faster than the sound speed, and the
Landau damping will be reduced; indeed, there can be
instability even when /3 = 0, in which case there is no
Landau or transit time damping at all. If/3 _> 1, the sound
wave is not involved in the instability, and the instability
generates primarily a transverse wave which is not subject to
Landau damping. It is tempting to speculate that Landau
damping may be less important in this case, bt it should be
realized that density fluctuations do play an essential rote in
generating even this instability. However, we must be cau-
tioned by the lower panels in Inhester's Figure 2, which
convey the same information about the dispersion relation as
our plots of y versus x r (although Inhester does not display
the root which has Xr > Y, or the root which corresponds to
x = y in equation (1)). For Te/T i = 9 and for /3 _< 0.5,
Inhester's plots show features which closely resemble the
"gaps" which represent instability in our y-xr plots. How-
ever, for larger values of /3, Inhester's solutions for the
dispersion relation do not resemble ours; for example, the
gap appearing near the top of our Figure 4a does not appear
in the third of the lower panels of Inhester's Figure 2, even
though the parameters are nearly the same. The possible
implication is that our results for/3 _ 1 or for/3 _> 1 have no
application to a collisionless system such as the solar wind.
Since the solar wind can have/3 _> 1 at 1 AU, it would seem
that further work on parametric instabilities in this parame-
ter regime is warranted. No hybrid simulations have been
presented for this case. Although Inhester's expressions
could be numerically evaluated for/3 _> 1, he has not done
SO.

The importance of kinetic effects has been emphasized
also by MjOlhus and Wyller [1988] and by Spangler [1989,
1990] in a related context. They were primarily interested in
the longitudinal velocity and density perturbations driven by
the Alfv6n wave ponderomotive force, with applications to
the modulational instability and the nonlinear wave equa-
tion. They found that kinetic theory yields results which are
substantially different from the fluid analysis when/3 _> 1.

The properties of the various instabilities discussed in this
paper have several physical implications, but, as discussed
in the preceding paragraphs, our results for/3 _ 1 or for/3 >_
1 have to be viewed with caution. Parametric instabilities

have been discussed as possibly playing a role in MHD
turbulence. Dobrowolny et al. [1980] have shown that in-
compressible turbulence occurs through the nonlinear inter-
action of oppositely propagating Alfvrn waves, and many
other discussions of turbulence have been based on this

notion [e.g., Tu et al., 1984, 1987; Marsch, 1991]. Chin and
Wentzel [1972] have suggested that a cascade can develop if
a newly generated backward-propagating Alfv6n wave in
turn decays into a forward propagating Alfv6n wave, and so
on. The decay instability for 0 </3 < 1 (section 3) may be an
important part of these processes, since it generates back-
ward propagating Alfv6n waves. The nearly purely growing
mode which occurs when /3 _ 0, and the rapidly growing
(Ymax ccA 1/3) mode which occurs when/3 _ 0 and y = 2, can
also generate backward propagating transverse waves, but
the phase speeds of these modes can be substantially less
than Va, and they should not be identified with Alfv6n
waves. In any event, both the turbulence and cascade
pictures will depend on the growth rates of the instabilities
which lead to the new waves, and on the physical nature of
the new waves. In this regard we point out that the unusual
situations which occur when /3 _ 0, namely, the nearly
purely growing mode and the mode with "Ymaxoc A 1/3, have
not been considered in the turbulence or cascade scenarios.

For example, Chin and Wentzel [1972] envision a cascade of
wave energy to ever smaller wavenumbers, but the nearly
purely growing mode produces transverse waves with wave-
numbers greater than that of the pump.

If/3 _> 1 the situation is quite different, since the instabil-
ities can generate forward-propagating transverse waves
with both frequency and wavenumber which are approxi-
mately twice the pump values. (This has been found in
numerical simulations by Umeki and Terasawa [1992].) This
allows energy to be transferred to high wavenumbers di-

rectly, rather than by a cascade. (However, the fact that the
growth rates scale as A 3/4 (/3 _. 1) or A 3/2 (/3 > 1) means that
a higher-order analysis than that of Chin and Wentzel [1972]
will be required.) The case /3 _> 1 may be important in
interpreting solar wind data, since that is frequently the case
in high-speed solar wind streams. The different character of
the instabilities when/3 _> 1 seems to have been overlooked.

For example, Inhester [1990, p. 10,533] incorrectly states
that "coupling becomes impossible [when] the ion sound
velocity exceeds the Alfv6n velocity." Chin and Wentzel
[1972] state that the coupling coefficient vanishes for decay
into two Alfvrn waves, but this is essentially the situation
which occurs when /3 _ 1 (Figures 16-18). Hoshino and
Goldstein [1989, p. 1407] incorrectly assert that "left-hand
polarized Alfv6n waves in high beta plasmas (/3 > 1) are
stable against parametric instabilities"; we have verified that
the beat instability discussed in section 5 exists even when
ion-cyclotron effects are taken into account.

One of the questions which has been addressed in terms of

decay instabilities is the origin of solar wind fluctuations
which, when described in terms of Els/isser variables, cor-
respond to Alfv6n waves with a sense of propagation toward
the sun [e.g., Marsch and Tu, 1990; Roberts et al., 1987],
even when the solar wind fluctuations are dominated by
outward propagating waves. Inhester [1990] suggests that
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decay instabilities provide a natural explanation for the

inward traveling waves. However, this picture does not

work as well if /3 _> 1, since the instability then leads

primarily to fluctuations proPagating in the same sense as the

pump. For example, the fastest growing wave in Figure 16

(/3 = 0.81) has P _ 3, while the fastest growing wave in

Figure 17 (/3 = 1.21) has P _ 12; larger values of/3 lead to

still larger values of P. (An alternative point of view has been

presented by Lou [1993], who explored the possibility that
non-WKB effects can explain the presence of both Els_isser

variables in the solar wind wave spectrum. However, this

mechanism only works at very low frequencies •and does not

seem capable of explaining the presence of both Elsiisser

variables throughout the entire range of observed frequen-

cies. See also Hollweg [1990].)

However, the instabilities which occur when/3 _ 1 may

help to explain the observation that solar wind fluctuations

tend to have more magnetic energy than kinetic energy. The

transverse waves generated in Figures 16-18 are mainly at

frequencies and wavenumbers too + to and k 0 + k, respec-

tively, but

too+to
--< 73A (46)
ko+k

A simple exercise using Faraday's law and E × B drifts

shows that inequality (46) implies an excess of magnetic

energy. A similar remark can be applied to the nearly purely

growing mode and to the mode having Tmax _ A 1/3 which

exist when/3 _ 0; the transverse components of these modes

are dominated by to_ and k_, but I(to0 - to)/(ko- k)l < VA.

Finally, we have to evaluate whether the instabilities can

grow fast enough to develop in the solar wind as it flows from

the Sun to -1 AU, where turbulence has developed and

some backward propagating waves are present [Roberts et

al., 1987]. We will assume that/3 = 1 throughout most of the

solar wind. Equation (17) then gives

]tma x _ A 3/4to 0/8 (47)

In the solar wind a typical value for A is A _ 1/2. Most

power is at periods of several hours in the inertial frame, or

at several tens of hours in the solar wind frame for an Alfvrn

Mach number of 10; we will adopt a plasma frame period of

1 day as representative. The e-folding time is then 2.1 days,

according to (47). However, since collisional effects reduce

the growth rate, this is an underestimate, by a factor

between 1.5 ]Terasawa et al., 1986] and 3 [Inhester, 1990].

Moreover, the solar wind power spectrum is not monochro-

matic as has been assumed here. Umeki and Terasawa

[1992] found that the broadband nature of the pump wave

does not change the physical nature of the instabilities, but

their simulations suggest that the growth time should be

increased by another factor of 3-5 for a power law power

siaectrum such as is observed in the solar wind. Thus the

growth time becomes 10-30 days, which is considerably

longer than the 4 days required for the solar wind to traverse

1 AU. Higher-frequency waves will grow faster in virtue of

the too dependence in (47), but there is less power at higher

frequencies so A is smaller; in fact the A 3/4 dependence

overwhelms the too dependence for solar wind spectra which

vary as ko 3/2 or ko 5/3 . It thus seems unlikely that the

instabilities discussed in this paper play a significant role in

the solar wind inside 1 AU.
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